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Abstract

Compressed Sensing (CS) is a well established theory involving many areas of
modern research. It concerns a family of theoretical techniques and numerical algo-
rithms aimed to recover sparse signals by a partial knowledge of their coefficients.
This process is carried out through minimization problems involving the ℓ1-norm,
that has the property to be convex, while enforcing sparsity. This work aims to
provide the fundamental theory of optimization that lies beneath the many CS
applications, with particular regard to convex minimization and Lagrange theory.
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1 Preliminaries

In this work, C denotes the complex field. If z ∈ C, then ℜ(z) and ℑ(z) denote
respectively the real part and the imaginary part of z. For all n ≥ 1, Cn is a 2n-
dimensional real vector space with real inner product defined by

ℜ⟨z, w⟩ := ℜ(zHw) = ℜ

⎛⎝ n∑
j=1

zjwj

⎞⎠ ,

where z denotes the complex conjugate of z = (z1, . . . , zn) and zH its conjugate-
transpose. The norm induced by ℜ⟨·, ·⟩ is the ℓ2n-norm on Cn, i.e.

∥z∥2 := (ℜ⟨z, z⟩)1/2 ,

which coincides with usual definition of ℓ2n-norm on Cn 1 2.
Under these assumptions, all the results stated in this work in the complex frame-

work also hold replacing C with R. We denote the canonical inner product on Rn

with

⟨x, y⟩ = xT y :=
n∑

j=1

xjyj ,

which coincides with the restriction of ℜ⟨·, ·⟩ to Rn.

We consider constrained optimization problems in the form⎧⎪⎨⎪⎩
minz∈Cn F0(z),

Az = y,

Fl(z) ≤ bl l = 1, . . . ,M,

(1)

where A ∈ Cm×n, y ∈ Cn and F0, F1, . . . , FM : Cn → (−∞,+∞]. Throughout this
work, we always assume m ≤ n. A point z ∈ Cn is called feasible if it belongs to the
constraint, that is if

z ∈ K :=
{
ζ ∈ Cn : Aζ = y and Fl(ζ) ≤ bl, l = 1, . . . ,M

}
and K is called the set of feasible points. To avoid triviality, we always assume
K ̸= ∅, in the which case the problem (1) is called feasible. In view of the definition
of K, the problem (1) can be implicitly written as

min
z∈K

F0(z).

1More precisely, if ⟨z, w⟩ =
∑n

j=1 zj ·wj denotes the canonical inner product on Cn, then ⟨z, z⟩ ≥ 0
for all z ∈ Cn, so that ℜ⟨z, z⟩ = ⟨z, z⟩

2Observe that ℜ⟨·, ·⟩ coincides with the real part of ⟨·, ·⟩.
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Remark 1.1. In many of the applications, K is bounded and the functions F1, . . . , FM

are continuous, so that K is also a closed (and non-empty by our assumption) subset
of Cn and, therefore, it is compact. If also F0 is continuous and defined on Cn, then
the set {z ∈ Cn : z minimizes problem (1)} is non-empty by Weierstrass Theorem.
In particular, p∗ := infz∈K F0(z) is attained.

In what follows, we will use the geometric version of Hahn-Banach Theorem, which
states the fact that disjoint convex subset of Cn can always be separated by an hyper-
plane.

Theorem 1.2 (Cfr. [10] Theorem 3.4). Let A,B ⊂ Cn be two convex and disjoint
subsets. Then, there exists ξ ∈ Cn and α ∈ R such that

ℜ⟨ξ, x⟩ ≤ α ≤ ℜ⟨ξ, y⟩

for all x ∈ A and all y ∈ B.

2 Convex optimization and Lagrange duality

In what follows, we always assume that all the functions involved in problem (1) are
continuous and that K ̸= ∅ is bounded. As we observed in Remark 1.1, in this situation,
the set of minimizers of (1) is non-empty and infx∈K F0(x) = minx∈K F0(x).

2.1 Lagrange duality

Let us consider the problem (1). The Lagrange function related to (1) is the function
L : Cn × Cm × [0,+∞)M → (−∞,+∞] defined as

L(z, ξ, ν) := F0(z) + ℜ⟨ξ, Az − y⟩+
M∑
l=1

νl(Fl(z)− bl).

Let K be the set of feasible points and z ∈ K. Then, for all ξ, ν

L(z, ξ, ν) = F0(z) + ℜ⟨ξ, Az − y⟩  
= 0

+

M∑
l=1

νl
≥ 0

(Fl(z)− bl  
≤ 0

) ≤ F0(z).

Therefore,
inf
z∈Cn

L(z, ξ, ν) ≤ inf
z∈K

L(z, ξ, ν) ≤ inf
z∈K

F0(z). (2)

Definition 2.1. The function H : Cm × [0,+∞)M → [−∞,+∞] defined as

H(ξ, ν) := inf
z∈Cn

L(z, ξ, ν)

is called Lagrange dual function.
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Equation (2) reads as
H(ξ, ν) ≤ inf

x∈K
F0(x)

for all ξ ∈ Rm and all ν ∈ [0,+∞)M . In particular, the weak duality inequality

sup
ξ∈Cm

ν∈[0,+∞)M

H(ξ, ν) ≤ inf
x∈K

F0(x), (W)

holds.
In Subsection 2.2, we will prove a condition under which d∗ := sup ξ∈Cm

ν∈[0,+∞)M

H(ξ, ν)

and p∗ := infz∈K F0(z) coincide. More precisely, if we consider the dual problem of
(1), i.e. the optimization problem⎧⎨⎩maxξ∈Cm

ν∈RM

H(ξ, ν),

νl ≥ 0 l = 1, . . . ,M,
(3)

we will establish conditions under which a solution of (3) is also a solution of (1). In
this case, the identity d∗ = p∗, which is called the strong dual equality, holds.

We end this paragraph proving a more symmetric expression of the weak dual in-
equality and of the strong dual equality. In what follows, we omit the set over which ξ
and ν vary, as they are clear by the context. First, we prove the following lemma:

Lemma 2.2. One has

sup
ξ,ν

L(z, ξ, ν) =

{
F0(z) if z ∈ K,

+∞ otherwise.

Proof. Let z /∈ K and suppose that (Az − y)J ̸= 0 for some 1 ≤ J ≤ m or FL(z) > bL

for some 1 ≤ L ≤ M . Let {ν(k)}∞k=1 ⊂ RM be a sequence such that ν
(k)
l = k · δl,L and

take {ξ(r)}j ⊆ Rm as ξ
(r)
j = r · sgn((Az − y)J)δj,J

3. Then,

L(z, ξ(r), ν(k)) = F0(z) + rℜ((Az − y)J) + k(FL(z)− bL) −−−−−→
k,r→+∞

+∞.

If z ∈ K, then for all ξ ∈ Cm and ν ∈ RM ,

L(z, ξ, ν) ≤ F0(z)

and the equality holds for ξ = 0 and ν = 0.

3Suppose that only the condition (Az − y)J ̸= 0 for some 1 ≤ J ≤ m is satisfied, in this case there
is no 1 ≤ L ≤ M such that FL(z) > bL. Hence, δl,L = 0 for all 1 ≤ l ≤ M and the following argument
still holds. An analogous argument applies if (Az − y)J = 0 for all 1 ≤ J ≤ m.
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As an immediate consequence,

p∗ = inf
z
sup
ξ,ν

L(z, ξ, ν).

Since also d∗ := supξ,ν H(ξ, ν) = supξ,ν infz L(z, ξ, ν), (W) can be written as

sup
ξ,ν

inf
z
L(z, ξ, ν) ≤ inf

z
sup
ξ,ν

L(z, ξ, ν), (4)

while the strong duality equality reads as

sup
ξ,ν

inf
z
L(z, ξ, ν) = inf

z
sup
ξ,ν

L(z, ξ, ν). (S)

2.2 Convex optimization

In this section, we approach the problem (1) in the in the case in which F1, . . . , FM are
convex functions. For the sake of clarity, we recall the definitions of convex functions
and convex subsets.

Definition 2.3 (Convex functions and subsets). Let X ⊆ Cn. A function F : X →
(−∞,+∞] is:

(a) convex if for all x, y ∈ X and all t ∈ [0, 1], F (tx+(1− t)y) ≤ tF (x)+(1− t)F (y);

(b) strictly convex if for all x, y ∈ X, x ̸= y, and all t ∈ (0, 1), F (tx + (1 − t)y) <
tF (x) + (1− t)F (y);

(c) concave (resp. strictly concave) if −F is convex (resp. strictly convex).

A convex subset of Cn is a subset X ⊆ Cn such that either X = ∅ or X is closed with
respect to convex combinations, i.e. tx+ (1− t)y ∈ X for all x, y ∈ X and all t ∈ [0, 1].

Remark 2.4. (a) If h : Cn → (−∞,+∞] is a linear functional, then h is both convex
and concave. This follows trivially by Definition 2.3. In particular, if A ∈ Cm×n

and hj(z) = (Az)j , then hj is both convex and concave.

(b) Sublevels of convex functions are convex subsets. More precisely, if F is convex,
then for all α ∈ (−∞,+∞], Yα := F−1((−∞, α]) is convex. We prove it for the
sake of completeness: if Yα = ∅ there is nothing to prove. Suppose Yα ̸= ∅ and
take z, w ∈ Yα and t ∈ [0, 1], then:

F (tz+(1−t)w) ≤ tF (z)+(1−t)F (w) ≤ tα+(1−t)α = α =⇒ tz+(1−t)w ∈ Yα.

(c) Trivially, if C1, C2 ⊆ Cn are convex, then C1 ∩ C2 is convex.

(d) If F defined on Cn is convex, then F is continuous. As a consequence, the sublevels
of such a function F are all closed and convex.
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Under the previously stated convexity assumptions, the set K of the feasible points
is closed and convex. In fact, using the notation introduced in Remark 1.1, the convexity
of K follows by Remark 2.4 (a)-(c), writing K as

K =
M⋂
l=1

F−1
j ((−∞, bl]) ∩ h−1({y}),

where h(z) := Az, while the fact that it is closed follows by Remark 1.1.

Definition 2.5 (Local and global minimizers). Let F : Y ⊆ Cn → (−∞,+∞]. A point
z ∈ Y is:

(a) a local minimizer of F if there exists ε > 0 such that

w ∈ Y, ∥z − w∥2 ≤ ε =⇒ F (z) ≤ F (w).

(b) a global minimizer of F if F (z) ≤ F (w) for all w ∈ Y .

Proposition 2.6. Let K ̸= ∅ be convex and F0 : K → (−∞,+∞] be a convex function.
Then,

(i) any local minimizer of F0 is a global minimizer;

(ii) the set of the minimizers of F0 is convex.

(iii) If F0 is strictly convex, the minimizer of F0 is unique.

Proof. (i) Let ε > 0 such that ∥z − w∥2 ≤ ε =⇒ F0(z) ≤ F0(w). Let ζ ∈ K and
t ∈ (0, 1) be such that ∥z − w∥2 ≤ ε, where w := tz + (1− t)ζ. Then,

F0(z) ≤ F0(w) ≤ tF0(z) + (1− t)F0(ζ) =⇒ (1− t)F0(z) ≤ (1− t)F0(ζ).

Since 1 − t ∈ (0, 1), it follows that for all ζ ∈ Y one has F0(z) ≤ F0(ζ). Thus, z
is a global minimizer.

(ii) Let z, w ∈ K be such that F0(z) = F0(w) = infζ∈K F0(ζ). Then, for t ∈ [0, 1]

F0(tz + (1− t)w) ≤ tF0(z) + (1− t)F0(w) = inf
ζ∈K

F0(ζ).

Therefore, tz + (1− t)w is a minimizer.

(iii) If z ̸= w are both minimizers of F0 and t ∈ (0, 1), by strict convexity:

F0(tz + (1− t)w) < tF0(z) + (1− t)F0(w) = inf
ζ∈K

F0(ζ).

This contradicts the definition of infimum.
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Remark 2.7. In several applications, the following hypothesis are assumed: let F0, F1, . . . , FM

be as in (1),

(a) F0 : C
n → R is convex;

(b) F1, . . . , FM : Cn → R are convex;

(c) K is non-empty and bounded.

Since convex functions defined on Cn are continuous, (b) and (c) imply that, in this
framework, the set of the feasible points K is compact, convex and non-empty. Since, by
(a) F0 is continuous, the infimum infK F0 is attained. In particular, under assumptions
(a)-(c), problem (1) has, at least, one solution and the conclusions of Proposition 2.6
hold.

In the convex framework, if the constraints Fl(z) ≤ bl do not reduce to Fl(z) = bl,
more precisely if for all l = 1, . . . ,M the inequality Fl(z) < bl holds for some z ∈ Cn,
then the strong duality holds.

Theorem 2.8 (Cfr. [1], Section 5.3.2). Assume that F0, F1, . . . , FM are convex func-
tions defined on Cn and F0 : Cn → (−∞,+∞]. Let z# and (ξ#, ν#) be optimizers for
(1) and (3) respectively.

(i) If there exists z̃ ∈ K such that Az̃ = y and Fl(z̃) < bl for all l = 1, . . . ,M , then
H(ξ#, ν#) = F0(z

#).

(ii) In absence of inequality constraints, if K ̸= ∅ (i.e. if there exists z̃ ∈ Cn such
that Az̃ = y), then H(ξ#, ν#) = F0(z

#).

Before proving Theorem 2.8, we need some prior concepts.

Definition 2.9 (Hyperplanes and supporting hyperplanes). (a) A hyperplane is any
subset of Cn in the form

Γ = {z ∈ Cn : ℜ⟨ξ, z⟩ = α},

for some ξ ∈ Cn and α ∈ R.

(b) Let Y be a subset of Cn. A supporting hyperplane to Y is an hyperplane
Γ = {z ∈ Cn : ℜ⟨ξ, z⟩ = α}, with α ∈ R, such that Y ⊆ {z ∈ Cn : ℜ⟨z, ξ⟩ ≥ α}
and Y ∩ Γ ̸= ∅.

Suppose that F0 is defined on Cn, as in the assumptions of Theorem 2.8, and consider
the image of the function

z ∈ Cn ↦→ ((F1(z)− b1, . . . , FM (z)− bM , Az − y, F0(z)) ∈ RM × Cm ×R,

that is the set

G :=
{
(F1(z)− b1, . . . , FM (z)− bM , Az − y, F0(z)) ∈ RM × Cm ×R : z ∈ Cn

}
.
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Clearly, the minimum in problem (1) is

p∗ = inf
{
t ∈ R : (u, v, t) ∈ G, ul ≤ 0 ∀l = 1, . . . ,M, v = 0

}
. (5)

The Lagrange function associated to (1) evaluated in (u, v, t) ∈ G can be written as

t+ ℜ⟨ξ, v⟩+
M∑
l=1

νl · ul = Λ(u, v, t),

where Λ is the linear functional defined by the vector (ν, ξ, 1)T ∈ RM ×Cm×R, that is

Λ(u, v, t) = ℜ⟨(ν, ξ, 1), (u, v, t)⟩.

For this reason, H(ξ, ν) is obtained by minimizing Λ over G, i.e.

H(ξ, ν) = inf
{
Λ(u, v, t) : (u, v, t) ∈ G

}
.

If we suppose that H(ξ, ν) > −∞, then the inequality

Λ(u, v, t) ≥ H(ξ, ν) ∀(u, v, t) ∈ G

tells that Λ(u, v, t) = H(ξ, ν) defines a supporting hyperplane to G in the point (u, v, t).

Remark 2.10. Since the last coordinate of the vector (ν, ξ, 1)T is non-zero and (ν, ξ, 1)
defines the normal vector to the supporting hyperplane, it follows that the supporting
hyperplane is never parallel to the t-axis. In particular, it intersects the axis u = v = 0.
More precisely, the intersection between the supporting hyperplane and the line u =
v = 0 is the point (0, 0, H(ξ, ν)). By weak duality, we also have H(ξ, ν) ≤ p∗, so that
this intersection always lies on the closed half-line {(0, 0, s) : s ≤ p∗}.

Consider the epigraph

A := G + ((R≥0)
M × Cm ×R≥0) =

=
{
(u, v, t) ∈ RM × Cm ×R : ul ≥ Fl(z)− bl (l = 1, . . . ,M),

v = Az − y, t ≥ F0(z) for some z ∈ Cn
}
.

(6)

Lemma 2.11. If F0, F1, . . . , FM are convex, then A is convex.

Proof. Let (u, v, t), (U, V, T ) ∈ A be such that⎧⎪⎨⎪⎩
ul ≥ Fl(z)− bl l = 1, . . . ,M,

v = Az − y j = 1, . . . ,m,

t ≥ F0(z)

and

⎧⎪⎨⎪⎩
Ul ≥ Fl(Z)− bl l = 1, . . . ,M,

V = AZ − Y j = 1, . . . ,m,

T ≥ F0(Z)
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for some z, Z ∈ Cn. Let τ ∈ [0, 1] be fixed. We have to prove that τ(u, v, t) + (1 −
τ)(U, V, T ) ∈ A. For all l = 1, . . . ,M , by the convexity of Fl, we have

τul + (1− τ)Ul ≥ τ(Fl(z)− bl) + (1− τ)(Fl(Z)− bl) =

= τFl(z) + (1− τ)Fl(Z)− bl ≥ Fl(τz + (1− τ)Z)− bl.
(7)

Analogously, for all j = 1, . . . ,m, by linearity,

τvj + (1− τ)Vj = A(τz + (1− τ)Z)− y (8)

and, by the convexity of F0,

τt+ (1− τ)T ≥ F0(τz + (1− τ)Z). (9)

Equations (7), (8) and (9) together give the assertion.

Proof of Theorem 2.8. Without loss of generality, we may assume K ̸= ∅ and rk(A) =
m 4. If the set K is non-empty, p∗ = infz∈Cn F0(z)

5 is either finite or −∞. In the
latter case, weak duality implies that also d∗ > −∞ and the assertion follows. Thus,
we suppose that p∗ ̸= −∞.

Let A be defined as in (6) and set

B :=
{
(0, 0, s) ∈ RM × Cm ×R : s < p∗

}
.

A and B are disjoint. In fact, if (u, v, s) ∈ A ∩ B, then s < p∗ and also t ≥ F0(z) for
some z ∈ Cn. The fact that F0(z) ≥ p∗ by definition leads to a contradiction.

By Lemma 2.11, A is convex, while B (which is an open half-line) is trivially convex.
Therefore, the assumptions of Theorem 1.2 are satisfied and we conclude that there
exists a triple of parameters (ν̃, ξ̃, µ) ̸= 0 and α ∈ R such that

(u, v, t) ∈ A =⇒ ν̃Tu+ ℜ⟨ξ̃, v⟩+ µt ≥ α, (10)

(u, v, t) ∈ B =⇒ ν̃Tu+ ℜ⟨ξ̃, v⟩+ µt ≤ α. (11)

By (10), we conclude that ν̃l ≥ 0 for all l = 1, . . . ,M and µ ≥ 0, otherwise ν̃Tu + µt
would be unbounded from below in A 6. Also, applying the definition of B to (11), we
find µt ≤ α for all t < p∗, which implies that µp∗ ≤ α. It follows that:{

ν̃l ≥ 0 for all l = 1, . . . ,M,

0 ≤ µp∗ ≤ α.

4The condition rk(A) = m′ < m means that m − m′ equations of the linear system Az = y are
redundant. Hence, they can be dropped. This procedure, replaces A with the full row rank matrix
obtained by suppressing m−m′ of its rows properly, whose rank is maximum.

5p∗ = inf{(0, 0, t) : t < p∗} also.
6For instance, if νl < 0, since in A you have ul = Fl(z)− bl +U2

l for some Ul ∈ R, you may take U2
l

small enough to contradict (10).
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Therefore, for all z ∈ Cn (since (F1(z)− b1, . . . , FM (z)− bM , Az − y, F0(z)) ∈ G ⊆ A),

M∑
l=1

ν̃l(Fl(z)− bl) + ℜ⟨ξ̃, Az − y⟩+ µF0(z) ≥ α ≥ µp∗. (12)

If µ > 0, then (12) gives that L(z, ξ̃/µ, ν̃/µ) ≥ p∗ for all z ∈ Cn, which implies that
H(ξ̃/µ, ν̃/µ) ≥ p∗. Since the other inequality is implicit in weak duality inequality, we
conclude that H(ξ̃/µ, ν̃/µ) = p∗.

We prove that it must be µ > 0. For, suppose that µ = 0 and observe that in this
case (12) reads as

M∑
l=1

ν̃l(Fl(z)− bl) + ℜ⟨ξ̃, Az − y⟩ ≥ 0. (13)

Let z̃ be the point such that Az̃ = y and Fl(z̃) < bl (l = 1, . . . ,M), whose existence is
assumed by hypothesis. Then,

0 ≤
M∑
l=1

ν̃l
≥ 0

(F (z̃)− bl)  
< 0

+ℜ⟨ξ̃, Az̃ − y⟩  
= 0

≤ 0,

which implies that ν̃l = 0 for all l = 1, . . . ,M . In particular, since the triple (ν̃, ξ̃, µ) is
non-zero, we deduce that ξ̃ ̸= 0. So, (13) reduces to

ℜ⟨ξ̃, Az − y⟩ ≥ 0 (14)

for all z ∈ Cn, with ℜ⟨ξ̃, Az̃ − y⟩ = 0. But {z ∈ Cn : ℜ⟨ξ̃, Az − y⟩ = 0} defines an
hyperplane of Cn, so that ℜ⟨ξ̃, Az − y⟩ < 0 for some for some z ∈ Cn or it vanishes
identically. However, neither of the two options is possible, since (14) holds and, on the
other hand, ℜ⟨ξ̃, Az − y⟩ = 0 for all z ∈ Cn contradicts both ξ̃ ̸= 0 and the assumption
rk(A) = m.

Remark 2.12. In CS, the uniqueness of the solution is granted by further properties
imposed on the sensing matrix A, e.g. the restricted isometry property (RIP). The
problem of giving conditions under which the solutions to these minimization problems
are unique is beyond the purpose of this section (see [2]). The interested reader may
consult [6], Chapters 4, 5 and 6.

2.3 Sparsity recovering

In this section, we study the equivalence that holds in several situations between (1)
and other minimization problems. The inverse problem in CS consists in solving the
following version of (1):

min
z∈Cn

∥Az − y∥2 subject to Ψ(z) ≤ r (15)
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for some r > 0, where y ∈ Cm is an (undersampled) acquired data, A is a properly
chosen sensing matrix and Ψ(z) is a regularizing term, which is typically a convex
function of z. It is well known (and we will prove it) that under certain hypothesis on
Ψ, (15) is equivalent to the unconstrained minimization problem

min
z∈Cn

∥Az − y∥22 + λΨ(z), (16)

where λ > 0 is called tuning parameter.

The first result in this direction is a consequence of Theorem 2.8.

Corollary 2.13. Let F0 : Cn → [0,+∞) and ϕ : [0,+∞) → R be such that ϕ is
monotonically increasing and ϕ ◦ F0 is convex. Let τ > 0 and Ψ : Cn → R be a convex
function such that Ψ−1([0, τ)) ̸= ∅. Let z# is a minimizer of the problem

min
z∈Cn

F0(z) subject to Ψ(z) ≤ τ. (17)

Then, there exists λ ≥ 0 such that z# is a minimizer of

min
z∈Cn

ϕ(F0(z)) + λΨ(z). (18)

Proof. Since ϕ is monotonically increasing, (17) is obviously equivalent to

min
z∈Cn

ϕ(F0(z)) subject to Ψ(z) ≤ τ, (19)

whose Lagrangian is given by

L(z, ν) = ϕ(F0(z)) + ν(Ψ(z)− τ). (20)

By the assumption, ϕ ◦F0 and Ψ are convex and the inequality Ψ(z̃) < τ is satisfied by
some z̃ ∈ Cn (observe that here we need τ > 0), so we can apply Theorem 2.8 to get
H(z#, ν#) = ϕ(F0(z

#)) for some ν# ≥ 0. By (4), for all z ∈ Cn and all ν ∈ R,

L(z#, ν#) ≤ L(z, ν#),

so that z# is also a minimizer of the function z ∈ Cn ↦→ L(z, ν#). Since the constant
term −ντ in (20) does not affect the minimum, we have that z# is a minimizer of

min
z∈Cn

ϕ(F0(z)) + ν#(Ψ(z)− τ).

Example 2.14. Clearly, the assumptions of Corollary 2.13 apply to problem (15),
where z is the approximated solution, ∥Az − y∥2 is a measure of the approximation
error and Ψ(z) is usually taken as ∥z∥1, ∥z∥TV or ∥Fz∥1, where F is the discrete Fourier
transform of z. In particular, CS inverse problem is equivalent (for an appropriate tuning
parameter λ ≥ 0) to (16). The tuning parameter which provides the exact solution is
λ = ν̃/µ, where ν̃ and µ are given as in the proof of Theorem 2.8, i.e. they are the
coefficients defining a separating hyperplane between A and B in the proof of Theorem
2.8.
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Another point of view one may assume in CS is the following: consider the problem
of recovering a signal z ∈ Cn which is contaminated by noise. This means that the
received signal y has the form y = Az + e, where A is the sensing matrix and e ∈ Cm

is a noise-like signal. Suppose to know that ∥e∥2 ≤ η for some η > 0, i.e. suppose that
the amplitude of noise can be estimated a priori. Then, since e = y−Az, the condition
∥e∥2 ≤ η takes the form of a constraint: ∥Az − y∥2 ≤ η. In CS, the model of vectors
to recover is provided by a sparsity condition, this means that we know in advance
that many of the coordinates of the acquired signal y vanish. More precisely:

Definition 2.15 (Sparse vectors). Let 0 ≤ k ≤ n ≤ N be integers. A vector y ∈ Cn

is k-sparse with respect to a frame 7 {Φ1, . . . ,ΦN} if ∥Φy∥0 := card(supp(Φy)) ≤ k,
where Φ ∈ RN×n is the matrix given by Φ = (Φ1|Φ2| . . . |ΦN ).

For the sake of simplicity, in the following, we always assume that Φ = 1n ∈ Rn×n,
i.e. the frame {Φ1, . . . ,ΦN} consists of the canonical basis of Rn.
Remark 2.16. It is worthy to observe that a vector y ∈ Cn is k-sparse if and only if
y ∈ Σk, where Σk is the union of all the subspaces of Cn in the form{

z ∈ Cn : zj1 = . . . = zjk = 0
}
, 1 ≤ j1 < . . . < jk ≤ n.

This allows the following generalization of Definition 2.15, that can be used in the
context of infinite dimensional vector spaces: let X be a vector space, a vector y ∈ X is
called sparse if y ∈ Σ, where Σ is a finite union of subspaces of X; and, further, using
the notion of variety.

Therefore, the inverse problem for sparse noise-contaminated signals becomes:

min
z∈Cn

∥z∥0 subject to ∥Az − y∥2 ≤ η. (21)

However, ∥·∥0 is highly non-convex so that, not only theorems of Subsection 2.2 cannot
be applied in this context, but also the numerical algorithms that lead to a minimizer of
(21) may turn to be bad-conditioned. For this reason, one replaces ∥·∥0 with a convex
norm of Cn, for instance the ℓ1n-norm, which is convex:

min
z∈Cn

∥z∥1 subject to ∥Az − y∥2 ≤ η. (22)

In view of the following result, it turns out that ∥·∥1 enforces sparsity, i.e. a minimizer
of (22) is sparse, at least in the real setting:

Proposition 2.17 (Cfr. [6] Theorem 3.1, Exercise 3.3). Let A ∈ Rm×n, y ∈ Rm.
Assume the uniqueness of a minimizer x# of

min
x∈Rn

∥x∥1 subject to ∥Ax− y∥ ≤ η, (23)

where ∥·∥ is any (quasi-)norm 8 on Rm and η ≥ 0, then:
7Recall that a set {Φj}j ⊂ X is a frame for the inner-product space (X, ⟨·, ·⟩) if there exist A,B > 0

such that for all x ∈ X one has A ∥x∥2 ≤
∑

j⟨x,Φj⟩ ≤ B ∥x∥2.
8Actually, ∥Ax− y∥ can be any constraint function of Ax. For instance, ∥Ax− y∥ = log(1 +

∥Ax− y∥p) for any p ≥ 0.
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(i) the columns {aj : j ∈ supp(x#)} of A are linearly independent;

(ii) x# is m-sparse.

Proof. (i) By the way of contradiction, assume that the system {aj : j ∈ S} is
linearly dependent, where S = supp(x#). Then, there exists v ∈ Rn such that
supp(v) = S and Av = 0. Since for all t ∈ R,

A(x# + tv)− y
 =

Ax# − y
 ≤ η

9 and x# is the unique minimizer of (23), we havex#
1
<

x# + tv

1
=

∑
j∈S

|x#j + tvj | =
∑
j∈S

sgn(x#j + tvj)(x
#
j + tvj)

for all t ̸= 0. If |t| < minj∈S
|x#

j |
∥v∥∞

, sgn(x#j + tvj) = sgn(x#j ) for all j ∈ S. For
such values of t,x#

1
<

∑
j∈S

sgn(x#j )(x
#
j + tvj) =

∑
j∈S

|x#j |+ t
∑
j∈S

sgn(x#j )vj =

=
x#

1
+ t

∑
j∈S

sgn(x#j )vj  
=: α

.

Hence, for all t ̸= 0, tα > 0. However, α is a fixed real number, in particular, we
can always choose t ̸= 0 small enough such that tα ≤ 0. This is a contradiction.

(ii) By (i), if m < ∥x∥0 ≤ n, A would have ∥x∥0 > m linearly independent columns,
but this is impossible, since rk(A) ≤ m, since A ∈ Rm×n.

Remark 2.18. In the complex setting, if C must be thought as a real vector space in
order for Proposition 2.17 to hold. In fact, z = (1, e2πi/3, e4πi/3)T is the unique solution
to (23)

A =

(
1 0 −1
0 1 −1

)
,

y = (3/2 +
√
3i/2,

√
3i)T and η = 0 (i.e. Ax = y), but it is not 2-sparse.

We presented two different point of views for the inverse problem in CS:

min
z∈Cn

∥Az − y∥2 subject to ∥z∥1 ≤ τ, (24)

min
z∈Cn

∥z∥1 subject to ∥Az − y∥2 ≤ η. (25)

Approaching (24), we also came up with the problem

min
z∈Cn

∥Az − y∥22 + λ ∥z∥1 . (26)
9This is the only point where we use the form assumed by the constraint. We stress that it is only

important that the constraint is a function of Ax, in order for the equality A(x# + tv) = Ax# to hold.
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Theorem 2.19. Let F0 : Cn → [0,+∞) and ϕ : [0,+∞) → R be such that ϕ is
monotonically increasing and ϕ ◦ F0 is convex 10. Let Ψ : Cn → [0,+∞) be a convex
function such that Ψ(0) = 0 11 12 13. Consider the problems:

min
z∈Cn

Ψ(z) subject to F0(z) ≤ η, (27)

min
z∈Cn

ϕ(F0(z)) + λΨ(z), (28)

min
z∈Cn

F0(z) subject to Ψ(z) ≤ τ. (29)

(i) If z# is a minimizer of (28) with λ > 0, then there exists η = ηz# ≥ 0 such that
z# is a minimizer of (27).

(ii) If z# is the unique minimizer of (27), then there exists τ = τz# ≥ 0 such that z#

is the unique minimizer of (29).

(iii) If z# is a minimizer of (29) with τ > 0, then there exists λ = λz# ≥ 0 such that
z# is a minimizer of (28).

Proof. Item (iii) is the content of Corollary 2.13. We prove (i) and (ii).

(i) Let z# be the minimizer of (28) and set η := F0(z
#). η ≥ 0 by the assumptions

on F0. Let ζ ∈ Cn satisfy F0(ζ) ≤ η, then using the fact that z# is the minimizer
and the monotony of ϕ:

λΨ(z#)+ϕ(F0(z
#)) ≤ λΨ(ζ)+ϕ(F0(ζ)) ≤ λΨ(ζ) ≤ λΨ(ζ)+ϕ(η) = λΨ(ζ)+ϕ(F0(z

#)).

Since λ > 0, the assertion follows.

(ii) Let z# be the unique minimizer of (27). Let τ := Ψ(z#), which is non-negative
by the assumption, and consider ζ ∈ Cn satisfying both z# ̸= ζ and Ψ(ζ) ≤ τ .
Since z# is the unique minimizer of (27) and τ = Ψ(z#), ζ must satisfy F0(ζ) > η,
otherwise it would be another minimizer of (27). Therefore,

F0(ζ) > η ≥ F0(z
#).

We proved that for all the feasible points ζ ̸= z#, F0(z
#) < F0(ζ). This implies

that z# is the unique solution of (29).

Remark 2.20. (a) Observe that the non-negativity of Ψ is only needed in the proof of
Theorem 2.19 (ii).

(b) In Theorem 2.19 (i) and (ii), Ψ does not need to be convex.
10The convexity of ϕ ◦ F0 is only required in the proof of (iii).
11This condition is stronger than the one encountered in Corollary 2.13, which required Ψ−1([0, τ)) ̸=

∅ for some τ > 0. We use this formulation, here, because it is satisfied by all the functions used in this
context and to consider Ψ as independent of τ .

12Beside the condition Ψ(0) = 0, the condition Ψ(z) ≥ 0 for all z ∈ Cn is a further condition that
we have to impose to prove (ii).

13The convexity condition is required only to prove (iii).
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3 Bi-criterion regularized approximation

In view of Corollary 2.13, the inverse problem in CS, namely

min
z∈Cn

∥z∥1 subject to ∥Az − y∥2 ≤ η, (30)

is, prior a correct choice of the parameter λ, equivalent to

min
z∈Cn

∥Az − y∥22 + λ ∥z∥1 . (31)

(31), read as it is, provides an example of a regularization technique used to approach the
so-called bi-criterion problems, in which the purpose is the simultaneous minimization
of the residual error, expressed as ∥Az − y∥, and the size of z, expressed as |||z|||, for
given norms ∥·∥ and ||| · |||. More precisely, a bi-criterion problem has the form:

min
z∈Cn

{∥Az − y∥ , |||z|||}, (32)

where the term |||z||| can be interpreted as the the priori information about the size of
z.

Differently from the point of view previously adopted, all the results of this section
are stated in the real setting. Actually, we always regarded Cn as a real Euclidean space
and all the results in the following paragraphs can be transposed to the complex setting
via any isomorphism between R2n and Cn.

3.1 Regularization

Regularization consists in approaching (32) assigning a weighting to one of the two
terms, solving the minimization problem

min
x∈Rn

∥Ax− y∥+ γ|||x||| (33)

for all γ > 0 and comparing the obtained solutions. The function ∥Az − y∥+ γ|||z||| in
(33) is called objective function.

Remark 3.1. When the euclidean norms are involved, a common procedure is to replace
∥·∥ and ||| · ||| with their squares in (33).

We point out that, with respect to the approach illustrated in the previous sections,
the point of view adopted here is significantly different, while the minimizing equation
being the same: in (31), the parameter λ has a precise definition, depends of the noise
amplitude η in (30) and of the input y; in turn, the parameter γ > 0 in (32) is a
trade-off between the residual error and the a priori information about the size of z.
Different values of γ lead to different solutions of (32), which trace out the optimal
trade-off curve as γ runs over (0,+∞). To decide which parameter γ > 0 is optimal, a
precise definition of optimality would be mandatory. Once this definition is established,
there is still no reason for the optimal parameter γ to coincide with λ, which in turn is
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mathematically established in terms of η and y. In MRI, the optimality of γ is decided a
posteriori by comparing the images reconstructed by (33), usually asking the opinion of
some experts. Anyway, there exist well established procedures that may help in the lo-
calization the optimal parameter, for instance the L-curve criterion (see Subsection 3.3).

There are several situations in which the solution to (33) is explicit in terms of A,
y and γ. In the Tikhonov regularization problem, where the ℓ2-norms are involved, the
explicit solution is derived differentiating the objective function:

Theorem 3.2 (Cfr. [1], Section 6.3.2). Let A ∈ Rm×n and γ > 0. Then, the minimizer
of

min
x∈Rn

∥Ax− y∥22 + γ||x||22 (34)

is given by
x# = (ATA+ γ1n)

−1AT y.

We point out that (ATA + γ1n)
−1 exists because γ > 0 and, since A is real, ATA

is positive semidefinite.

Proof of Theorem 3.2. Explicitly, the objective function is

∥Ax− y∥22 + γ||x||22 = (Ax− y)T (Ax− y) + γxTx.

Hence, for all l = 1, . . . , n,

∂

∂xl
(∥Ax− y∥22 + γ||x||22) = 2

(
∂

∂xl
(Ax− y)

)T

(Ax− y) + 2γxT
∂x

∂xl
=

= 2(A(l))T (Ax− y) + 2γxl =

= 2(Al)TAx− 2(A(l))T y + 2γxl,

where A(l) is the l-th column of A. Therefore,

∇(∥Ax− y∥22 + γ||x||22) = 2ATAx− 2AT y + 2γx = 0

if and only if
ATAx+ γx = AT y,

that is (ATA+ γ1n)x = AT y.

Different formulations of (34) can be treated analogously. For instance, the explicit
minimizer to the problem

min
x∈Rn

∥Ax− y∥22 + γ||Φx||22,

for a given sparsifying transform Φ ∈ Rp×n, is provided by the linear estimator

x# = (ATA+ γΦTΦ)−1AT y

(cfr. [9] Theorem 13.1).
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3.2 De-noising

Bi-criterion regularization is used in reconstruction problems, when the acquired data
is corrupted by noise, to recover the noiseless signal. Here, as noise we intend a vector
e ∈ Rm such that the acquired signal y ∈ Rm is the superposition of the exact signal
x ∈ Rm and e, i.e. y = x + e. Typically, ∥e∥2 is assumed to be small and the process
modeled by the bi-criterion problem

min
x∈Rm

{∥x− y∥2 , ϕ(x)}, (35)

for a given convex regularizing function ϕ : Rm → R, is called de-noising.

Example 3.3. (a) When the original signal is known to be smooth and the noise is
known to be rapidly varying, quadratic smoothing produces a reliable de-noised
signal. It consists in solving (35) with

ϕ(x) =
m−1∑
j=1

(xj+1 − xj)
2 = ∥Dx∥22 ,

where D ∈ R(m−1)×m is the bidiagonal matrix

D =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎠ .

For, one writes the corresponding regularization equation, i.e.

∥x− y∥22 + γ ∥Dx∥22 ,

which produces the explicit solution x# = (1m + γDTD)−1y.

(b) If the original signal features rapid variations, the quadratic smoothing method is
not well suited to its reconstruction. In this situations, it is preferable to use the
regularizing term

ϕTV (x) :=

m−1∑
j=1

|xj+1 − xj | = ∥Dx∥1 ,

which is called total variation (TV) of x. Enforcing the sparsity of Dx, ϕTV (x) is
a regularization term well-suited to recover signals having few rapid variations.
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3.3 L-curve method for the regularization parameter selection

It has become clear that a correct choice of the optimal tuning parameter γ for problem
(33) is fundamental for regularization methods. One possibility is to find the minimizer
xγ to (33) for different values of γ, and trace the curve (log ∥Axγ − y∥ , log |||xγ |||),
whose shape is reminiscent of the letter L. Heuristically, the optimal tuning parameter,
γopt is the one corresponding to the point (log

Axγopt − y
 , log |||xγopt |||) closest to the

corner of the graph.
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